Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes.

نویسندگان

  • Jeroen J J P van den Beucken
  • Matthijn R J Vos
  • Peter C Thüne
  • Tohru Hayakawa
  • Tadao Fukushima
  • Yoshio Okahata
  • X Frank Walboomers
  • Nico A J M Sommerdijk
  • Roeland J M Nolte
  • John A Jansen
چکیده

This study describes the fabrication of two types of multilayered coatings onto titanium by electrostatic self-assembly (ESA), using deoxyribosenucleic acid (DNA) as the anionic polyelectrolyte and poly-d-lysine (PDL) or poly(allylamine hydrochloride) (PAH) as the cationic polyelectrolyte. Both coatings were characterized using UV-vis spectrophotometry, atomic force microscopy (AFM), X-ray photospectroscopy (XPS), contact angle measurements, Fourier transform infrared spectroscopy (FTIR), and for the amount of DNA immobilized. The mutagenicity of the constituents of the coatings was assessed. Titanium substrates with or without multilayered DNA-coatings were used in cell culture experiments to study cell proliferation, viability, and morphology. Results of UV-vis spectrophotometry, AFM, and contact angle measurements clearly indicated the progressive build-up of the multilayered coatings. Furthermore, AFM and XPS data showed a more uniform build-up and morphology of [PDL/DNA]-coatings compared to [PAH/DNA]-coatings. DNA-immobilization into both coatings was linear, and approximated 3microg/cm(2) into each double-layer. The surface morphology of both types of multilayered DNA-coatings showed elevations in the nanoscale range. No mutagenic effects of DNA, PDL, or PAH were detected, and cell viability and morphology were not affected by the presence of either type of multilayered DNA-coating. Still, the results of the proliferation assay revealed an increased proliferation of primary rat dermal fibroblasts on both types of multilayered DNA-coatings compared to non-coated controls. The biocompatibility and functionalization of the coatings produced here, will be assessed in subsequent cell culture and animal-implantation studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibronectin/polyelectrolyte multilayered assemblies: film formation and cell attachment studies

Biomimetic materials capable of specific interactions with a biological environment represent the current biomaterial paradigm within tissue engineering and drug delivery [1]. Electrostatically driven layer-by-layer (LbL) self-assembly [2,3] is a simple and robust method for realizing structurally tailored biomaterial coatings, of thickness ca. 10 nanometers, containing biofunctional ligands. W...

متن کامل

Nanostructured Active Biomaterials for Tissue Engineering Applications

In recent years, considerable effort has been devoted to the design and controlled fabrication of nanostructured materials with functional properties. The layer by layer buildup of the polyelectrolyte multilayered films from oppositely charged polyelectrolytes [1] offers new opportunities for the preparation of functionalized biomaterial coatings. This technique allows the preparation of supram...

متن کامل

Fabrication and Characterization of Nanostructure Functionally Graded Ni-P Electroless Coating

In this research, novel functionally graded Ni-P coating was deposited with electroless process. The content of phosphorus was controlled to change gradual through the thickness of the coating. During the plating, bath temperature and pH were changed at specified intervals to obtain functionally graded structure. To compare the properties of functionally graded coating with Ni-P single-layer co...

متن کامل

Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2.

The focus of the present study was to functionalize multilayered DNA-coatings with the osteoinductive factor bone morphogenetic protein 2 (BMP-2) using different loading modalities. The multilayered DNA-coatings were built up from either poly-d-lysine (PDL) or poly(allylamine hydrochloride) (PAH) and DNA using electrostatic self-assembly (ESA). The amounts of BMP-2 loaded into the multilayered ...

متن کامل

Characterization and cell behavior of titanium surfaces with PLL/DNA modification via a layer-by-layer technique.

This study describes the fabrication of two types of multilayered films onto titanium by layer-by-layer (LBL) self-assembly, using poly-L-lysine (PLL) as the cationic polyelectrolyte and deoxyribonucleic acid (DNA) as the anionic polyelectrolyte. The assembling process of each component was studied using atomic force microscopy (AFM) and quartz crystal balance (QCM). Zeta potential of the LBL-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2006